Black Hole: a massive object in the universe whose gravitational field distorts all space-time in its vicinity to such an extent that neither matter nor light can escape that vicinity. In 1967, the physicist John Wheeler coined the phrase "black hole" in acknowledgment of the fact that such an object, due to its entrapment of all light waves, would present itself to the naked eye as entirely black. Since that time, dozens of black holes have been discovered in the universe. There is one right at the center of our Milky Way; others are at the centers of other galaxies. In fall 2005, astronomers discovered a black hole floating through the universe all on its own, far beyond all galaxies, at a distance of about 5 giga-lightyears. A literary description of a black hole can be found in Stanislaw Lem's novel ►Fiasco. Birth of a Monster A black hole is created whenever matter exceeds a certain degree of density. ►General relativity theory tells us that massive objects, by their gravitational fields, distort all space in their vicinity. This can be noticed by the fact that light rays in the vicinity of such an object no longer run in straight lines. Rather, they are shifted in the direction of the object as if passed through a convex lens. This effect is noticeable even in our own sun, but is even more pronounced in neutron stars or in still denser objects, according to their respective degrees of density. If the massive object happens to be very small, it can force the light onto its orbit, thus "strangulating" space entirely. In this way a black hole evolves. At its center it contains a so-called ►singularity, a point of infinite density and gravity. The size beneath which an object can become a black hole is called the object's Schwarzschild radius, after the physicist Karl Schwarzschild. What an object's Schwarzschild radius is depends on its mass. In the case of our sun — which, however, has too small a mass ever to become a black hole in reality — the Schwarzschild radius is 3 kilometers.* For an object of the Earth's mass it comes to about 9 millimeters. The Schwarzschild radius is at the same time the black hole's ►event horizon, that is, the boundary that cannot be transgressed by any matter or radiation from within its region. This boundary can be traversed only in one direction. It therefore acts as a kind of one-way causal barrier: events beyond it cannot have causes located within (with the exception of the black hole itself), though it is possible for events within to have causes located beyond it.
In this graphic, the bottom end of the funnel constitutes the event horizon. Underneath it there is an infinitely deep tunnel leading right into the singularity at the center of the black hole. But this region is in principle not observable from outside the black hole. Because at this point the singularity still eludes all description, there is speculation that it has the shape of a ►wormhole leading into another universe or another dimension. Since, however, it is not advisable to actually enter a black hole so as to verify this hypothesis, it will probably remain mere conjecture. Due to the strong gravitational field, the gravity in the vicinity of a black hole is subject to dramatic effects. A space traveler would feel these effects long before hitting the event horizon. Those of his body parts that face toward the hole would accelerate more rapidly — and hence would fall toward the hole at a faster speed — than those facing the opposite direction. Thus, if he were to fall head first toward the hole, the difference in acceleration between head and feet would stretch him apart, and this — in the case of a black hole with the sun's mass — with a force that reaches 100 billion kg at the event horizon itself. At the same time, the massive forces would press his body together at the sides. Thus, on his way into the hole our unfortunate space traveler would acquire a rather slim and stretched-out shape — a process that the physicist ►Stephen Hawking has graphically termed spaghettification. Black Holes Need Not be Black Just like an ►elementary particle, a black hole has no individual characteristics whatsoever. Black holes differ only in their mass, charge, and rotating speed. Moreover, they are by no means always black. For one thing, as Hawking showed in 1981 by means of theoretical calculations, their event horizon itself does emit weak radiation due to the extremely strong gravitational field (Hawking radiation).** For another, the matter attracted by the gravitational field is heated up just prior to falling into the hole to such an extent that the hole actually shines brightly toward the outside, as long as there is a sufficient amount of matter in its vicinity.
Black holes can be separated into several types on the basis of their sizes and histories:
A neutron star is not yet a black hole. However, beyond a certain amount of mass the atomic nuclei continue to be compressed further and the radius of the neutron star diminishes accordingly. Finally, the star collapses completely and becomes a black hole. This entire process, from the collapse of the star's remnants through the creation of the black hole, takes a very short time — a few seconds to a few minutes.
Black Holes on Earth Up to this point, we can only speculate about black holes. Physicists have planned for years to create and examine a black hole on Earth. This sounds like a daredevil undertaking, but physicists are really serious about it. After various hiccups, the LHC (Large Hadron Collider) in Geneva, the largest particle accelerator on Earth, is scheduled (at this writing) to be finally launched in 2009; it could in principle produce black holes the size of an elementary particle.*** By examining such micro-holes and their decay, scientists hope to acquire new insights about the number of ►dimensions in our space and hence also about string theory, which is expected to become the final, definitive theory of physics. * The formula is R = 2Gm/c2, where R is the Schwarzschild radius, G the ►gravitational constant, m the mass of the object, and c the ►speed of light. When we apply the values we obtain R = 1.5·10-27·m, so that the Schwarzschild radius of an average scientist of 70 kg body weight is approximately 10-25 meters. The Schwarzschild radius of the ►visible universe amounts to approx. 15 giga-lightyears and hence is not that far beneath the universe's actual size. ** Admittedly, in identifying this radiation Hawking used a combination of relativity and quantum theory, even though these theories apply to different space-time domains. It is therefore not entirely certain whether Hawking radiation really exists. *** Don't worry: such small black holes cannot pose a danger to Earth. They quickly decay due to Hawking Radiation (see also the above foot note ;).
|